Integrerend project systeemtheorie 16/04/2013, Tuesday, 9:00-12:00

1 (3+12=15)

Consider the state-space system

 $\dot{x}_1 = -x_1^6 - x_2$ $\dot{x}_2 = x_1 + u$ $y_1 = x_2^2$ $y_2 = x_1.$

- (a) Show that $x_1(t) = -1$, $x_2(t) = -1$ and u(t) = 1 is a solution of the system.
- (b) Determine the linearized system around this solution.

2 (20)

Kharitonov's theorem

Consider the interval polynomial $p(s, a, b, \mu) = s^3 + s^2 + [a, b]s + [\mu a, \mu b]$ where a, b, μ are real numbers with a < b and $0 < \mu$. For which values of a, b, μ , and μ , does $p(s, a, b, \mu)$ have all its roots in the open left half-plane?

3
$$(3+4+4+4+4+10+6=35)$$
 Controllability and observability

Consider the linear system

$$\dot{x} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u \qquad y = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} x.$$

Explain your answers to the following questions:

- (a) Is it stable?
- (b) Is it controllable?
- (c) Is it observable?
- (d) Is it stabilizable?
- (e) Is it detectable?

Linearization

- (f) Does there exist a stabilizing state feedback u = Fx? If yes, determine such a feedback.
- (g) Does there exist an observer of the form $\dot{\hat{x}} = P\hat{x} + Qu + Ry$? If yes, determine such a compensator.

4	(3+17=20)	Companion fo	orm
---	-----------	--------------	-----

Consider the linear system

$$\dot{x}(t) = Ax(t) + bu(t)$$

where $x \in \mathbb{R}^n$ is the state, $u \in \mathbb{R}$ is the input, $A \in \mathbb{R}^{n \times n}$, and $b \in \mathbb{R}^n$. Suppose that (A, b) is controllable and $\det(\lambda I - A) = \lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_1\lambda + p_0$. Let the vectors q_1, q_2, \ldots, q_n be defined as

$$q_{n} = b$$

$$q_{n-1} = Ab + p_{n-1}b = Aq_{n} + p_{n-1}q_{n}$$

$$q_{n-2} = A^{2}b + p_{n-1}Ab + p_{n-2}b = Aq_{n-1} + p_{n-2}q_{n}$$

$$\vdots$$

$$q_{1} = A^{n-1}b + p_{n-1}A^{n-2}b + \dots + p_{2}Ab + p_{1}b = Aq_{2} + p_{1}q_{n}.$$

(a) Show that the vectors q_1, q_2, \ldots, q_n are linearly independent.

(b) Let $T = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}$. Show that

$$T^{-1}b = T^{-1}q_n = \begin{bmatrix} 0\\0\\\vdots\\0\\1 \end{bmatrix}$$

and

$$T^{-1}AT = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -p_0 & -p_1 & -p_2 & \cdots & -p_{n-1} \end{bmatrix}.$$

(HINT: First find out AT.)

10 pts gratis.