Integrerend project systeemtheorie

16/04/2013, Tuesday, 9:00-12:00
$1(3+12=15)$
Linearization

Consider the state-space system

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}^{6}-x_{2} \\
\dot{x}_{2} & =x_{1}+u \\
y_{1} & =x_{2}^{2} \\
y_{2} & =x_{1} .
\end{aligned}
$$

(a) Show that $x_{1}(t)=-1, x_{2}(t)=-1$ and $u(t)=1$ is a solution of the system.
(b) Determine the linearized system around this solution.

Consider the interval polynomial $p(s, a, b, \mu)=s^{3}+s^{2}+[a, b] s+[\mu a, \mu b]$ where a, b, μ are real numbers with $a<b$ and $0<\mu$. For which values of a, b, and μ, does $p(s, a, b, \mu)$ have all its roots in the open left half-plane?
$3 \quad(3+4+4+4+4+10+6=35)$
Controllability and observability

Consider the linear system

$$
\dot{x}=\left[\begin{array}{rrr}
0 & 1 & -1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u \quad y=\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right] x .
$$

Explain your answers to the following questions:
(a) Is it stable?
(b) Is it controllable?
(c) Is it observable?
(d) Is it stabilizable?
(e) Is it detectable?
(f) Does there exist a stabilizing state feedback $u=F x$? If yes, determine such a feedback.
(g) Does there exist an observer of the form $\dot{\hat{x}}=P \hat{x}+Q u+R y$? If yes, determine such a compensator.
$4 \quad(3+17=20)$

Companion form

Consider the linear system

$$
\dot{x}(t)=A x(t)+b u(t)
$$

where $x \in \mathbb{R}^{n}$ is the state, $u \in \mathbb{R}$ is the input, $A \in \mathbb{R}^{n \times n}$, and $b \in \mathbb{R}^{n}$. Suppose that (A, b) is controllable and $\operatorname{det}(\lambda I-A)=\lambda^{n}+p_{n-1} \lambda^{n-1}+\cdots+p_{1} \lambda+p_{0}$. Let the vectors $q_{1}, q_{2}, \ldots, q_{n}$ be defined as

$$
\begin{aligned}
q_{n} & =b \\
q_{n-1} & =A b+p_{n-1} b=A q_{n}+p_{n-1} q_{n} \\
q_{n-2} & =A^{2} b+p_{n-1} A b+p_{n-2} b=A q_{n-1}+p_{n-2} q_{n} \\
& \vdots \\
q_{1} & =A^{n-1} b+p_{n-1} A^{n-2} b+\cdots+p_{2} A b+p_{1} b=A q_{2}+p_{1} q_{n} .
\end{aligned}
$$

(a) Show that the vectors $q_{1}, q_{2}, \ldots, q_{n}$ are linearly independent.
(b) Let $T=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{n}\end{array}\right]$. Show that

$$
T^{-1} b=T^{-1} q_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

and

$$
T^{-1} A T=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-p_{0} & -p_{1} & -p_{2} & \cdots & -p_{n-1}
\end{array}\right]
$$

(Hint: First find out $A T$.)

10 pts gratis.

